Robust clustering using a kNN mode seeking ensemble
نویسندگان
چکیده
منابع مشابه
Fast kNN mode seeking clustering applied to active learning
A significantly faster algorithm is presented for the original kNN mode seeking procedure. It has the advantages over the well-known mean shift algorithm that it is feasible in high-dimensional vector spaces and results in uniquely, well defined modes. Moreover, without any additional computational effort it may yield a multi-scale hierarchy of clusterings. The time complexity is just O(n √ n)....
متن کاملA Robust Convex Formulation for Ensemble Clustering
We formulate ensemble clustering as a regularization problem over nuclear norm and cluster-wise group norm, and present an efficient optimization algorithm, which we call Robust Convex Ensemble Clustering (RCEC). A key feature of RCEC allows to remove anomalous cluster assignments obtained from component clustering methods by using the group-norm regularization. Moreover, the proposed method is...
متن کاملA new ensemble clustering method based on fuzzy cmeans clustering while maintaining diversity in ensemble
An ensemble clustering has been considered as one of the research approaches in data mining, pattern recognition, machine learning and artificial intelligence over the last decade. In clustering, the combination first produces several bases clustering, and then, for their aggregation, a function is used to create a final cluster that is as similar as possible to all the cluster bundles. The inp...
متن کاملThe ensemble clustering with maximize diversity using evolutionary optimization algorithms
Data clustering is one of the main steps in data mining, which is responsible for exploring hidden patterns in non-tagged data. Due to the complexity of the problem and the weakness of the basic clustering methods, most studies today are guided by clustering ensemble methods. Diversity in primary results is one of the most important factors that can affect the quality of the final results. Also...
متن کاملMean Shift, Mode Seeking, and Clustering
Mean shift, a simple iterative procedure that shifts each data point to the average of data points in its neighborhood, is generalized and analyzed in this paper. This generalization makes some k-means like clustering algorithms its special cases. It is shown that mean shift is a mode-seeking process on a surface constructed with a “shadow” kernel. For Gaussian kernels, mean shift is a gradient...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Pattern Recognition
سال: 2018
ISSN: 0031-3203
DOI: 10.1016/j.patcog.2017.11.023